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Abstract. We consider an n-dimensional integration rule Rt1") of degree 2t - I 
and of hypercubic symmetry. We derive theorems which set a lower bound in terms 
of n and t on the number of function evaluations such a rule requires. These results 
apply to spaces of integration which have hypercubic symmetry. In certain cases 
this bound is very close to the number of points required by a known rule. 

1. Introduction. In previous papers (Lyness [1], [2], [3]), referred to as Parts 
I, II, and III, respectively, we considered in detail a certain type of n-dimensional 
symmetric integration rule R(') of hypercubic symmetry suitable for integration 
over an n-dimensional hypercube. The rule R(n) may be expressed in terms of basic 
n-dimensional rules (Ri(n) defined in Part I, 

(1.1) =R 
= E tjRj(n)j, (i # 0. 

We express this relation by stating that R(') includes the basic rule GRj("). In 
Part III we constructed high-dimensional rules of degree 2t + 1 which required 
as few function evaluations as we could conveniently arrange. 

The construction of economical high-dimensional integration rules of particular 
degree is an intricate problem. A common procedure is to write down a composite 
rule R(n) which contains sufficient undetermined parameters and then to write down 
the nonlinear equations* 

(1.2) R(n)f = f, 

where f is in turn one of a set of polynomials (the elements of c(i) of Lyness [2, 
Section 4]). These simultaneous nonlinear equations are difficult to solve and it 
may easily happen that the form of R(') is such that there are no solutions to these 
equations. In this paper we establish certain theorems which give information about 
the form of R(n) and so reduce the likelihood of fruitless attempts to solve sets of 
simultaneous nonlinear equations which have no solution. We illustrate the type 
of theorem in the following rather trivial example. 

We might search for a two-dimensional integration rule of degree 5 by insisting 
on using as evaluation points only points for which I xi = x2 1. In the notation of 
Lyness [1], this means a rule of the form 

(1.3) R'2'a tie(egin,fi), 

where {i are weighting factors. 

Received November 10, 1964. This work was supported in part by U. S. Air Force Grant 
No. 685-64 to the University of New South Wales. 

* R(n)f iS the result of applying rule R(n) to the function f. I(n)f is the exact n-dimensional 
integral of thlis function over the unit hypercube. 
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We are then led to the four equations: 

R (2 = i (2?y 

with f being in turn the polynomials 1, xl2, xi4, and xl2x22. These equations are in 
fact insoluble. This can be seen if we calculate (R(ai, ai) (x12 - x22)x12. This basic 
rule evaluates any function only at points where x12 = x22, that is, at points where 
the function (x12 - x22)x12 is zero. Thus 

aei, ati) (XJ2_ X2-2)X12 = o, 

and so 

R(2) (X12 - = 
2 

jE tiiR(ai, ai) (Xl2- X22 )X12 = 0. 

But 
() (X 12- _ 2 2)X,2 =i(2)X,4 i(2)X12 X22 

= 1- #O - 0. 

Thus 

R(2)f #(2)J 

for at least one function f of degree 4, and so R (2) cannot be of degree 5 if it is of 
form (1.3) above. 

This result could be stated in the form that all two-dimensional rules of degree 
5 nmust include a basic rule cR(a, d) with a $ #d. It also shows that the number of 
points required by a two-dimensional rule of degree 5 of hypercubic symmetry is 
equal to or greater than the smallest possible v(QI(a, j3)) which is 4. 

In this paper we establish several theorems which place restrictions of the above 
type on the form of an n-dimensional rule R(+) of hypercubic symmetry and of 
degree 2t + 1. To do this we classify into sets the basic rules (R(n) and show that 
R(+) must include members of certain sets or combinations of sets. The proofs of 
these theorems follow the same lines as the proof of the result stated above, but 
are of course more complicated. 

2. Sets and Classes of Basic Rules. An n-dimensional basic rule may be written 
in the form 

(2.1) R(n) = GR(O)n, * CR(al)n * (,)n2 * * * **()X 

where the ai are s distinct nonzero coordinates and the ni are positive integers 
arranged so that 

(2.2) n?>n2 >.n.n8>O. 

Different rules (RG which are defined by the same set of integers no, 2l, n * n, 
(but which may have different coordinates ai) are defined as belonging to the 
same class. Basic rules belonging to the same class require the same nuinber of 
function evaluations v(R(n) ). 

We define three sets of the rules a (n) given by (2.1) and (2.2) above. These are 

(R E p(,l if n-no ? i and s > 1, 
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(R (n)C ) if n-no?i and s=1, 
(nn) if 

(Rn) E P,2 if n-no ? i and s _ 2. 

We define 1(o), the minimal number of points of a set a, by the equation 

P(f) = min v(R) 
REff 

and R is a minimal rule of a set a if and only if 

R E a and v(R)= (u). 

Finally we define 

v(, ') = min (v(R) + v(R')), 
REU;R'Ea' 

where R and R' are in different classes. 
The values of v(a) may be calculated using the formulas given in Section 5 of 

Part I. We find in particular 

mi (- ntll tf ,l1 n) - 

We min (2t(t 1) +2t(t) 2t 1(t 1) + 2,2n21( n) +2) 

We also find 

p(p n)) ( = min (2(), 2n) 

_ 1 (2(n))n2 

These inequalities indicate that in constructing a rule R we should avoid if it 
is possible the use of basic rules from the sets p ,n) as we may use up to i - 1 dif- 
ferent rules from the set 8ni) instead at a lower cost in terms of number of points. 
We should also avoid as far as possible rules from sets p ,n) with large i. The theorems 
of the next section indicate how far it is possible to do this if the rule R(n) is to be of 
degree 2t + 1. 

3. Bounds on 
v(,(n)). 

We define the set 8(n) as the set of all n-dimensional 
integration rules of hypercubic symmetry of degree 2t + 1. In this section we state t 
a set of theorems which together place a lower bound on v(,(n)). For n > t, this 
bound is relatively close to the number of points required by known integration 
rules. 

THEOREM 3.1. If an n-dimensional rule R(n) is of the form 

R(n) = ((R(O))n-8 * R(8) 

where R(8) is any s-dimensional composite rule, and 

f = (X12X 2 2x+1)g(x1 X X 

t The proofs of these theorems and a wider discussion of the definitions are available in 
preprint form from the author. 
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where g is any polynomial, then 

R(n)f = 0. 

Two rather simple corollaries of this theorem follow; 
THEOREM 3.1A. 

((R(O)) n-8 * R(8)f = 0 when f i,m > s +1. 

THEOREM 3.1B. 

E(n) ()R(8)f= 0 when f C 4Ji,m > s + 1. 

The sets tn+l are defined and discussed in Section 4 of Part II. 
THEOREM 3.2. Iff - (x2 - X22)g(Xl X X2 X * * Xn), where g is any polynomial, 

then 

((R(a) ) nf = 0. 

Theorems 3.1, 3.1A, 3.1B, and 3.2 play a basic part in the proofs of the remaining 
theorems of this section. 

THEOREM 3.3. An n-dimensional rule R(n) of degree 2t + 1 includes a basic rule 
of the set p(n) , where t' = min (n, t). 

Before going on to the next theorem, we emphasize the importance of this 
theorem for n > t. Using only the results that 

I(n)X 2X 2 x2 

and that the rule has hypercubic symmetry, we have shown that 

(t+1) ?t 7(p(n) = min (2t(),2n) 

This number may be large. In Part III we obtained a rule WJ15) which requires 
26,921 function evaluations. This rule satisfies 

W (15)f I(15) 

when f is any of the twelve elements of 44(15). However, to satisfy this equation 
when f is the element x12x22x32x42 requires 21,840 points. Although we cannot strictly 
state that particular points belong in any sense to particular functions, in this 
case it is correct to infer that, but for having to satisfy this one equation, we could 
satisfy the remaining eleven equations using less than 5,200 points. Thus, in this 
example (n = 15; t- 4) we see that Theorem 3.3 gives a bound which is 80% 
of the lowest known value, and that this 80 % of the points arise from having to 
satisfy one of the twelve defining equations. This bound is the one listed in Table 
1 of Part II. 

The remaining theorems are of the same type as this theorem. Their effect is 
to raise the lower bound on p( g+j). 

THEOREM 3.4. An n-dimensional rule R(n) of degree 2t + 1, t > 4, includes a 
basic rule of the set ptn,2I where t' = min (n, t -2). 

THEOREM 3.5. An n-dimensional rule R(n) of degree 2t + 1 which includes no 
basic rule from the set pt ,2 either includes two rules of different classes from the set 
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(n), or includes one or more rules of the class 61(O)`~*Gt(a)' if there exists an intger 
e t - 1 + k(n - t + 1) > t, where 

k 2~~~~~~~~ k=I(")x12x22 
*Xt 

Ik=- 1x2 .. I(n)Xl4%2 ..X2_1 

The dependence of these theorems on the region of integration is relatively 
slight. Theorem 3.3 depends on 

In)X,2 
2 ... XI2 j 0. 

Theorem 3.4 depends on 

I(n) (X2 -X22)X14X22 ... Xt2 d 0 

and Theorem 3.5 requires further 

i(n)X,4X 22 X2_ 3>E 0 

and the value of k in Theorem 3.5 is the ratio of the first to the third of these. We 
are interested in regions of integration symmetric under the interchange of co- 
ordinates, so it follows that 

i(n(X - 
2 

X22)X14X22 ... Xt2 = jI()(XI2 - Z22)2X22 * ** Xt2 

Since the integrand in each case is non-negative definite, the above inequalities 
may be relied upon. 

The value of k does affect the number of points required. In the case of integra- 
tion over a hypercube, we have 

k=f 

In the case of integration over an infinitely extended region with weight function 

exp [-E x,2] (see Stroud and Secrest [5] or Lyness [4]), we find 

k=i. 

4. A Lower Bound on v(s(+4)0. Theorems 3.3, 3.4, and 3.5 may be usled to set a 
bound on the number of points required by R('). Considering the cases in which 
n ? t ? 4 only, we find that these theorems may be combined to yield 

THEOREM 4.1. An n-dimensional rule R(+) (n _ t > 4) of degree 2t + 1, either 
(a) includes a basic rule of the set pt,2), or 
(b) includes a basic rule of the set Ct, , and one of the set Pt-i),2, or 

(it) 

(c) includes a basic rule of the set Ort.1 , one of the set a(n),i, 'and one of the set 
Pt 2 , each rule being in a different class, or 

(d) includes a basic rule of the class 6t(0)"'-*& (a)' and one of the set p(.s; 
here s = t - 1 + k(n - t + 1) and mut be an integer > t. 

The bound may be found as follows. We set 

(4.1) ip = 

(4.2) 7b = V(a{'P) + i(ppt1,2), 

(4.3) vc = P(rt{'l, Ot-1,l) + V(pt-2,2), 

Vd = cc, k(n - t + 1) not a positive integer, 

= V((((O))m- * (6R(a))') + V(p2,2), s = t - 1 + k(n- t + 1). 
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These values P. X Vb X, P, , and Vd correspond to the possibilities a, b, c, and d of Theorem 
4.1. In terms of these quantities we write 

(4.5) P( }+I) > min (v0, P&, ve, i'd) 

This may be expressed explicitly in terms of n and t using the expressions given in 
Section 2; however, the expanded equation is unwieldy. 

If n >> t, we find 

(4.6) P(+n) > 2 (t) + 2 t1 (n) + (t-2)2'-2 (n) 

This may be compared with the one-parameter system Wf(+, described in Sections 
6 and 8 of Part III. There 

(.) (Wn) = 2' (t) + 2t-1 (n )+ (t-1)2-2( n) 
+ terms of lower degree in n 

The closeness of this lower bound (4.5) to the number of points used by pre- 
viously published rules for integration over a hypercube is indicated in the table. 

Numerical values for certain degree 9 rules 
(t = 4). 

n Va Pb V? Vd V(35(n)) R5(n)t 

4 64 80 96 6 64 169 
6 384 448 344 (360)* 344 477 

10 10,240 3,904 2,344 c 2,344 2,645 
15 87,360 33,760 j 26,320 cc 26,320 26,921 

* This value applies in case k _1/3. In case k = 5/9 this is cc . 
t These rules are W(n) or Wfi(3 defined in Sections 6 and 8 of Part III. See 

Table 2 of Part III. 

Po , Vb I Vc I and Pd are defined in equations (4.1) to (4.4) and the limit on p(85(f)) 

is (4.5). The table indicates that this bound is relatively close to the actual value 
of i( 6(n)) for large n. It also gives information about the form of a minimal rule 
for large n. For n = 10 and 15, the minimal rule must be of the form indicated in 
(c) of Theorem 4.1, since either choice (a) or choice (b) of Theorem 4.1 require 
more points than required by an existing rule. 
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